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In a magnetic medium the nuclear spins are coupled by the indirect Suhl-Nakamura interaction. This 
interaction contributes to the nuclear magnetic resonance (NMR) linewidth and gives rise to a shift in the 
NMR frequency which is important in the helium-temperature range for materials with a large concentra
tion of nuclear spins and a large interaction range, b. When this frequency pulling is appreciable, there 
exists a relative narrowing of the NMR line of the same order of magnitude as the relative frequency shift. 
This narrowing arises because the motions of the nuclear spins within the interaction range, b, are correlated. 

I. INTRODUCTION 

IT has been shown by Suhl1 and Nakamura2 that for 
ordered magnetic materials with a high concentra

tion of nuclear spins, an important source of linewidth 
for the nuclear magnetic resonance (NMR) signal is 
the indirect nuclear spin-spin interaction via the 
exchange of virtual spin waves. These authors have 
calculated the second moment of the NMR line under 
the conditions of (1) complete nuclear disorder, i.e., 
an infinite nuclear temperature, Tn> and (2) complete 
order in the electronic spin system, i.e., zero electronic 
spin temperature, Ts. In the helium-temperature range 
(~ 1 °K) these assumptions are usually justified because 
(1) the nuclear polarization is only of the order of a few 
percent, and (2) the electronic magnetization (sub-
lattice magnetization in an antiferromagnet) has 
deviated only slightly from its saturation value. How
ever, it has recently been shown3 that, if (a) the 
concentration of nuclear spins is large, e.g., material 
with Co and Mn and (b) the electronic resonance 
frequencies are low, there will be an important de
pression of the NMR frequency at low temperatures 
arising from the indirect interaction. The relative 
frequency shift in a ferromagnet is given by 

-5co/o>= (<*n/<*e)((I,)/(S,)) , (LI) 

where a)n=ynHn—A{Sz)/fi>y o)e is the electronic resonance 
frequency, yn is the nuclear gyromagnetic ratio, A is 
the isotropic hyperfine coupling energy, and ( ) denotes 
thermal average. Taking a>„=3X109 sec"1, coe=2X1010 

sec"1, I=S=% (plausible values for Mn++) this gives 
5co/a>~3X10~3/7\ The corresponding result for an 
antiferromagnet is 

— 5o>/oJ« (cOexOJn/cOe2) ((^z)/{Sz)) , (1 .2 ) 

where o>ex is the exchange frequency, usually of the order 
of 1013 sec-1. For Mn++, and at an electronic frequency 
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of 9.4 kMc/sec, this gives a relative shift of about 40%. 
Such a large frequency pulling has, in fact, been ob
served by Heeger, Portis, and Witt4 in the canted 
antiferromagnet KMnF3. A much smaller frequency 
shift in ferrimagnetic MnFe204 has more recently been 
identified.5 The frequency pulling may be considered as 
a collective nuclear spin effect where a given spin 
experiences an effective field arising from all the 
neighboring spins within the interaction range, b. When 
this effect is large, as in KMnF3, the motion of individ
ual spins, with a distance b, may be strongly correlated 
and the assumption (1) of complete nuclear spin 
disorder must be more carefully investigated even at 
comparatively high temperatures (^1°K) where the 
nuclear polarization is small. In Sec. II, we consider the 
lowest order correlation effect by calculating the second 
moment of the power spectrum of the nuclear resonance 
mode. The result is that there is a relative reduction of 
the linewidth (for a Gaussian line where the second 
moment is a good measure of the width) of the same 
order of magnitude as the frequency shifts given by 
(1.1) and (1.2) for ferromagnets and antiferromagnets, 
respectively. 

II. MOMENT CALCULATION 

Following Ref. 3, we define the nuclear spin waves 
and their power spectrum Pq (12) by 

4q
+=2>*q- r ' /<+ (II.l) 

and 

P,(Q)= Jdt(Aq-(Q)A+(t))em. (II.2) 

The moments of Pq(&) will be determined for the 
Hamiltonian H=HQ-\-Hi, where the first-order Hamil-
tonian H0 is given by 

H0~~A($z)ZiIig (H.3) 
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and the second-order term Hx is1,2 

ffi—£ Uiji+ir, (n.4) 

with 
/A2S\ ^q-(Ri-R/) 

(H.5) 
/A2S\ ^« •(**-*/> 
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power of 0 in the expansion, only the second term of 
(11.13) is nonvanishing and the line width becomes 

ij6j i 

\2N ) * fto)e(q) 

The first moment of Pq (0) gives the nuclear spin-wave 
spectrum,3 i.e., 

=*/(/+i)I3<£V, (n.14) 

where we have used the fact that T r ( /~ / + ) = | / ( / + l ) . 
The sum over lattice sites in (11.14) is easily1'2 per
formed and gives 

(0 q )= / Pq(G)1M2 / / Pq(Q)dQ, (II.6) 

where the frequency pulling arises from H\. The line-
width Afi of the uniform nuclear resonance mode 
(q=0) is related to the second moment of the power 
spectrum, 

(AV)J= 
r/(7+l) »n* 

(11.15) 

bv 

(122)= \ p($)WdQ / / P(Q)dQ, (II.7) 

(IL8) (AQ)2=<^2>—<«>2. 

Using (II.2), the first and second moments are given, 
respectively, by 

and 
(Q)=+i{A-dA+/dt)/(A-A+), (11.9) 

(&)= -{A~d2A+/dt2)/{A~A+), (11.10) 

where ifi(dA+/di) — \_A+,H~]. The resonance frequency 
is then determined from (II.3), (II.4), and (II.9) to be 

<0) = i 4 < S , > - 2 £ UitfrIi+Ii*)rL(IcIi+). (11.11) 

The frequency pulling arises when the thermal averages 
in the second term of (11.11) are evaluated using the 
Hamiltonian, H: 

( 0 ) = T r tOe-wyTrie-W]. 

If we let a denote the normalization factor, i.e., 

^Z(Ii-Ij+), (H.12) 
ij 

the linewidth becomes 

(AO)2^(2/£V)[2 £ UMlnrWfls) 

+ E UiJuH((im-ij+iinl-)~(im-ij+il+ii-))']. 
19*3,17*2 

(11.13) 

The thermal averages are calculated by expanding the 
Boltzmann factors in powers of 0y i.e., (kT)~l. In the 
limit of infinite nuclear spin temperature, i.e., the zeroth 

This gives a width of several Mc/sec for Mn2 + for 
coe~10 kMc/sec. This is probably the most important 
Ti mechanism in materials with Mn55 or Co59. 

We now evaluate (Aft)2 from (11.13) keeping terms 
to first order in 0 in order to find any polarization or 
correlation effects. The lowest order temperature 
corrections to (11.14) are, thus, obtained in a straight
forward way as 

(AflV = £ { 2 [ 2 / ( / + l ) / 3 ] 2 

ijl ij I 

+ [ ( 1 0 / 3 ) / ( / + l ) + f ] ( E E V ) . (H.16) 

We shall see shortly that the negative term in (11.16) 
is the largest, and neglecting the others for the moment 
the total width becomes 

(A0)*= (4 / (7+1) /3) ( £ # , • / ) 
ij 

X[l-(27(7+l)/3)(£ uti)0}- (H.17) 
i 

The second term in the brackets is precisely the 
resonance frequency shift given in (11.11). Thus, 
neglecting the positive term in (11.16), we find a relative 
reduction of the second moment precisely equal to the 
relative frequency pulling. The first positive term in 
(11.16) may easily be shown to be related to the 
negative term by 

£ UnUuUn^KZ Uif)(Z Uim). (ins) 
ijl ij I 

The third term is much smaller than those and is quite 
negligible. The final result is, then, that there is a 
reduction of the second moment given by 

5 (AG) 3 50 
r^j 

AO. ~ 8 0 
(11.19) 
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For cases such as KMnF 3 at liquid-helium temperatures 
where 5 0 / 0 ^ 4 0 % , we might expect approximately a 
20% narrowing of the nuclear resonance at low power 
levels. Of course, this reduction of the second moment 
would get larger at even lower temperatures. 

I t should be emphasized that this narrowing effect 
arises because the nuclear spins within a Suhl range 
(H^/HA)ll2a have motions which are no longer 

INTRODUCTION 

IN an earlier paper1 the author suggested that it might 
prove useful to compute the spectral moments by 

perturbation theory and then invert the moments to 
find the density of states, rather than to compute the 
density of states directly from the perturbation ex
pansion. In the present paper a more elegant scheme for 
obtaining the spectral moments from perturbation 
theory by using contour integration is described (Sec. 
I I I ) . The method is tested on the one-dimensional im
purity band structure problem (Sec. V) and is applied to 
the three-dimensional impurity band structure problem 
(Sec. VI). 

We use a characteristic function closely related to 
Van Hove's2 resolvent operator. The characteristic 
function is expanded as a power series in the perturba
tion operator following Van Hove and Hugenholtz.3 The 
expansion is shown to be nonconvergent for the im
purity problem so that the expansion is at best 
asymptotic. Convergence is best at high energy. The 
moment method would be a technique for analytically 
continuing the perturbation expansion to low energy if 
the perturbation expansion were truly convergent. 

1 E. O. Kane, Phys. Rev. 125, 1094 (1962). 
2 The resolvent operator is discussed in Ref. 3. 
3 N. M. Hugenholtz in The Many Body Problem, edited by C. 

DeWitt (John Wiley & Sons, Inc., New York, 1958), p. 1. 

completely random but are correlated by the indirect 
interaction itself. 
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The moment approach is a different type of approach 
from the diagram summation techniques used in field 
theory. Both methods begin with the same type of 
perturbation expansion but the diagram summation 
methods select special subsets of terms which can be 
summed to infinite order. The partially resummed 
function is then assumed to apply, at least approxi
mately, to a greater range of energies than the original 
perturbation expansion. In the moment method, as we 
have used it, no diagrams are summed to infinite order. 
All diagrams are included through fourth order and the 
spectral moments are used to analytically continue the 
perturbation expansion valid at high energy into a 
Legendre polynomial expansion valid at low energies.4 

A great many variations on the use of spectral mo
ments are possible. They could be used together with 
summations to infinite order and they could be inverted 
using functions other than Legendre polynomials. We 
have not explored these possibilities, however. 

The problem of the band structure of impure semicon
ductors has been most extensively studied in one di
mension. 5r~7 Quantitative three-dimensional calculations 
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A contour integral method of calculating spectral moments from the perturbation expansion of a char
acteristic function is described. The moments are used to provide a sort of "analytic continuation" of the 
perturbation expansion for the density of states into a Legendre polynomial expansion valid for low energies. 
The method is tested on the one-dimensional impurity band structure problem. The results are less accurate 
than Klauder's best diagram-summing approximation. The inaccuracy of the results is attributed to poor 
convergence of the perturbation expansion for the moments. We apply the method to the three-dimensional 
impurity problem where the impurities are represented by randomly located screened Coulomb potentials. 
At intermediate densities the perturbation expansion for the moments converges much faster than in one 
dimension, hence, the results should be more accurate. Although the Thomas-Fermi method should not be 
accurate at intermediate densities, it agrees remarkably well with the perturbation-moment results. 


